Search results for "Action potential firing"

showing 2 items of 2 documents

EMERGENCE OF TRAVELLING WAVES IN SMOOTH NERVE FIBRES

2008

International audience; An approximate analytical solution characterizing initial condi- tions leading to action potential ¯ring in smooth nerve ¯bres is determined, using the bistable equation. In the ¯rst place, we present a non-trivial sta- tionary solution wave. Then, we extract the main features of this solution to obtain a frontier condition between the initiation of the travelling waves and a decay to the resting state. This frontier corresponds to a separatrix in the projected dynamics diagram depending on the width and the amplitude of the stationary wave.

StationarityBistability[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]01 natural sciencesNerve fibresStanding waveOptics[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP]0103 physical sciencesTraveling wave[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Discrete Mathematics and Combinatorics[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematics010306 general physicsProjected dynamicsPhysicsSeparatrixbusiness.industry[SCCO.NEUR]Cognitive science/NeuroscienceApplied Mathematics[SCCO.NEUR] Cognitive science/NeuroscienceDiagramDynamics (mechanics)Mechanics010101 applied mathematics[NLIN.NLIN-CD] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]Amplitude[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][ SCCO.NEUR ] Cognitive science/NeuroscienceAction potential firingbusinessAnalysis
researchProduct

ANALYTICAL DETERMINATION OF INITIAL CONDITIONS LEADING TO FIRING IN NERVE FIBERS

2007

International audience; An analytical solution characterizing initial conditions leading to action potential firing in smooth nerve fibers is determined, using the bistable equation. In the first place, we present a nontrivial stationary solution wave, then, using the perturbative method, we analyze the stability of this stationary wave. We show that it corresponds to a frontier between the initiation of the travelling waves and a decay to the resting state. Eventually, this analytical approach is extended to FitzHugh-Nagumo model.

StationarityBistability[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]01 natural sciencesStability (probability)010305 fluids & plasmasStanding waveOptics[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesReaction–diffusion systemTraveling wave[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]0101 mathematicsEngineering (miscellaneous)PhysicsQuantitative Biology::Neurons and Cognitionbusiness.industry[SCCO.NEUR]Cognitive science/Neurosciencenerve fibersApplied Mathematics[SCCO.NEUR] Cognitive science/Neurosciencereaction-diffusion[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mechanics[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]010101 applied mathematicsModeling and Simulation[ SCCO.NEUR ] Cognitive science/Neuroscience[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Action potential firingbusinessStationary solutionnerve fibers.International Journal of Bifurcation and Chaos
researchProduct